An Application of Graph Theory to Additive Number Theory

NogA Alon* and P. Erdös

Abstract

A sequence of integers $A=\left\{a_{1}<a_{2}<\cdots<a_{n}\right\}$ is a $B_{2}^{(k)}$ sequence if the number of representations of every integer as the sum of two distinct a_{i} is at most k. In this note we show that every $B_{2}^{(k)}$ sequence of n terms is a union of $c_{2}^{(k)} \cdot n^{1 / 3} B_{2}^{(1)}$ sequences, and that there is a $B_{2}^{(k)}$ sequence of n terms which is not a union of $c_{1}^{(h)} \cdot n^{1 / 2} B_{\underset{2}{(1)}}$ sequences. This solves a problem raised in [3,4$]$. Our proof uses some results from extremal graph theory. We also discuss some related problems and results.

Sidon called a finite or infinite sequence of integers $A=\left\{a_{1}<a_{2}<\cdots\right\}$ a $B_{2}^{(k)}$ sequence if the number of representations of every integer as the sum of two distinct $a_{i} s$ is at most k. In particular he was interested in $B_{2}^{(1)}$, or, for short, B_{2} sequences, i.e. the case where all the sums $a_{i}+a_{j}$ are distinct.

Let f_{n} denote the maximal cardinality of a B_{2} subsequence of $\{1,2, \ldots, n\}$. Turán and Erdös proved [5]

$$
\begin{equation*}
n^{1 / 2}-O\left(n^{5 / 16}\right)<f_{n}<n^{1 / 2}+O\left(n^{1 / 4}\right) \tag{1}
\end{equation*}
$$

The lower bound of (1) was also proved by Chowla. Let H_{n} denote the largest r such that every sequence of n integers contains a B_{2} subsequence of cardinality r. Komlós, Sulyok and Szemerédi [6] proved a general theorem which implies

$$
\begin{equation*}
H_{n}>c \cdot n^{1 / 2} \tag{2}
\end{equation*}
$$

where c is an absolute constant. By (1) $c \leqslant 1$, and maybe,

$$
H_{n}=(1+o(1)) n^{1 / 2}
$$

This does not seem to be easy to prove.
Let $H_{a}^{(k)}$ denote the largest r such that every $B_{2}^{(k)}$ sequence of n integers contains a B_{2} subsequence of cardinality r. In [3] an infinite $B_{2}^{(2)}$ sequence which is not the union of a finite number of B_{2} subsequences is constructed. A similar construction shows that there exists a $B_{2}^{(2)}$ sequence of n terms with no B_{2} subsequence of cardinality $\geqslant c \cdot n^{2 / 3}$ (see [4]). Thus

$$
\begin{equation*}
\left(H_{n}^{(k)} \leqslant\right) H_{n}^{(2)}<c \cdot n^{2 / 3} . \tag{3}
\end{equation*}
$$

In this note we prove
THEOREM 1. Every $B_{2}^{(k)}$ sequence of n terms is a union of $c_{2}^{(k)} \cdot n^{1 / 3} B_{2}$ sequences. 'On the other hand, by (3) there is a $B_{2}^{(k)}$ sequence of n terms which is not a union of $c_{1}^{(k)} \cdot n^{1 / 3}$ B_{2} sequences.

At the moment we cannot strengthen this result to $\left(c_{3}^{(k)}+o(1)\right) n^{1 / 3}$. It is perhaps interesting to observe that the dependence on k is so weak. Note that Theorem 1 implies that

$$
\begin{equation*}
H_{n}^{(k)} \geqslant c_{4}^{(k)} \cdot n^{2 / 3} . \tag{4}
\end{equation*}
$$

This solves a problem raised in [3, 4].

[^0]Proof of Theorem 1. Since $(3 / c)\left(n-c \cdot n^{2 / 3}\right)^{1 / 3}+1 \leq(3 / c) n^{1 / 3}$, repeated application of (4) implies the assertion of Theorem 1 (with $c_{2}^{(k)}=3 / c_{4}^{(k)}$). We thus have to prove (4). Let $A=\left\{a_{1}<a_{2}<\cdots<a_{n}\right\}$ be a $B_{2}^{(k)}$ sequence. Let $G=(V, E)$ be a 4 -uniform hypergraph on the set of vertices $V=\{1,2, \ldots, n\}$ where $\{i, j, l, m\}$ is an edge if $a_{i}+a_{j}=a_{t}+a_{m}$. The number of edges of G is clearly $<\frac{1}{2}(k-1) \cdot\binom{n}{2} \leqslant \frac{1}{4}(k-1)+n^{2}$. Note that if $F \subseteq V$ is independent, (i.e. no edge of G is contained in F), then $\left\{a_{f} ; f \in F\right\}$ is a B_{2} subsequence of A. Thus we have to show that G contains an independent subset of size $\geqslant c(k) \cdot n^{2 / 3}$. This follows either from the known results about Turán's problem for hypergraphs (see, e.g. D. de Caen [1, inequality (5)]) or from an easy application of the probabilistic method. Indeed, choose every vertex in V independently with probability $c \cdot n^{-1 / 3}$ to obtain a subset U of V of cardinality $(c+o(1)) \cdot n^{2 / 3}$ containing $\leqslant((k-1) / 4+$ $o(1)) c^{4} \cdot n^{2 / 3}$ edges. F is obtained from U by deleting one vertex from each such edge. If $c=c(k)$ is chosen appropriately we clearly obtain the desired result. This completes the proof.

Using a similar, though somewhat more complicated, probabilistic argument we can show that the analogue of (4) holds also for infinite sequences, namely:

THEOREM 2. Every infinite $B_{2}^{(k)}$ sequence $A=\left\{a_{1}<a_{2}<\cdots\right\}$ contains a B_{2} subsequence C such that for every $n \geqslant 1$

$$
\begin{equation*}
\left|C \cap\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}\right| \geqslant\left[c^{(k)} n^{2 / 3}\right] . \tag{5}
\end{equation*}
$$

OUTLINE OF Proof. For $i \geqslant 1$ choose, independently, a_{1} with probability $c / i^{1 / 3}$ to get a sequence $D=\left\{d_{1}<d_{2}<\cdots\right\}$. A quadruple $\left\{d_{i}, d_{j}, d_{l}, d_{m}\right\}$ of elements of D is bad if $d_{i}+d_{j}=d_{i}+d_{m}$ Let C be the subsequence of A obtained from D by deleting the largest element of every bad quadruple. Obviously D is a B_{2} sequence.

Easy estimates of the expected values and the variances of the random variables $\left|D \cap\left\{a_{1}, \ldots, a_{n}\right\}\right|$ and $\mid\left\{Q: Q\right.$ is a bad quadruple in $\left.D \cap\left\{a_{1}, \ldots, a_{n}\right\}\right\} \mid$ show that if $c=c(k)$ is sufficiently small, then, with positive probability, (5) holds for all $n=2^{r}$. This implies the validity of (5) (with a smaller constant $c^{(k)}$) for all $n>0$.

Another property of $B_{2}^{(k)}$ sequences is given in the following theorem.
THEOREM 3. Every (finite or infinite) $B_{2}^{(k)}$ sequence is a union of $c=c(k)$ subsequences, each of which contains no arithmetic progression of three terms.

Proof. Let $A=\left\{a_{1}<a_{2}<\cdots\right\}$ be a $B_{2}^{(k)}$ sequence. Let $G=(V, E)$ be a 3-uniform hypergraph on the set of vertices $V=\{1,2, \cdots\}$ in which $\{i, j, l\}$ is an edge if $a_{i}+a_{j}=2 a_{j}$. We must show that V can be covered by $c(k)$ independent subsets. Let H be an induced subgraph of G on r vertices. Clearly H contains at most $r \cdot k$ edges and hence contains a vertex of degree at most $3 k$. Thus, by an easy induction, the vertices of any finite subgraph of G can be partitioned to $\leqslant 3 k+1$ independent subsets. This proves the theorem for finite sequences. The infinite case follows, by the compactness principle.

Similar to Theorem 1 is the following.
THEOREM 4. Every $B_{2}^{(k)}$ sequence of n terms is a union of $c_{2}^{(k)} \cdot n^{1 /(2 k-1)} B_{2}^{(k-1)}$ subsequences. On the other hand if $k=2^{s}$ there exists a $B_{2}^{(k)}$ sequence of n terms which is not the union of $c_{1}^{(k)} \cdot n^{1 /(2 k-1)} B_{2}^{(k-1)}$ subsequences.

Proof. The first part of the theorem is proved as before. For the second part, we consider the following construction. Put $n=m^{2 k-1}$. Let $A_{0}, A_{1}, A_{2}, \ldots, A_{s}$ be disjoint sets of integers, $\left|A_{i}\right|=m^{2^{2}}$. Let $G=(V, E)$ be the complete $(s+1)$-uniform ($s+1$)-partite hypergraph on the classes of vertices A_{0}, \ldots, A_{5}, i.e. $V=\bigcup_{i=0}^{i} A_{i}$ and E consists of all $(s+1)$-subsets of V having exactly one element from each A_{i}. Clearly $|E|=\prod_{i=0}^{\pi}\left|A_{i}\right|=n$. For each edge $e \in E$, put $a_{c}=\sum_{\nu \in e} 10^{*}$. One can easily check that $A=\left\{a_{c} ; e \in E\right\}$ is a $B_{2}^{(k)}$ sequence of n terms. A standard hypergraph theoretic argument (analogous to that of [2]) shows that every subgraph of G of more than $c(k) n^{1-1 /(2 k-1)}=c(k) m^{2 k-2}$ edges contains a copy of a complete ($s+1$)-partite hypergraph with 2 vertices in each class. Therefore for every subsequence D of A of more than $c(k) n^{1-1 /(2 k-1)}$ terms there are $a_{i}^{1}, a_{i}^{2} \in A_{i}(0 \leqslant i \leqslant s)$ such that all the 2^{s+1} numbers $\sum_{i=0}^{s} 10^{a_{i}^{j}}\left(\varepsilon_{j} \in\{1,2\}\right)$ are in D, and hence D is not a $B_{2}^{(k-1)}$ sequence. Thus no $B_{2}^{(k-1)}$ subsequence of A has cardinality $>c(k) n^{1-1 /(2 k-1)}$ and the assertion of the theorem follows.

It seems likely that every sequence of n terms is a union of $(1+o(1)) n^{1 / 2} B_{2^{-}}$ subsequences, but this seems to be very difficult, (and would imply, of course, that $c=1+o(1)$ in (2)). However, one can easily modify the proof of the lower bound of (1) to show that $\{1,2, \ldots, n\}$ is a union of $(1+o(1)) n^{1 / 2} B_{2}$-sequences.

The method of this note implies easily that for every $\varepsilon>0$ there exists a $c=c(\varepsilon)$ such that the sequence $\left\{1,2^{2}, 3^{2}, 4^{2}, \ldots, n^{2}\right\}$ contains a B_{2}-subsequence of cardinality $c \cdot n^{2 / 3-\varepsilon}$. We do not know how close this bound is to the truth. Maybe $n^{2 / 3-\varepsilon}$ can be replaced by n^{1-r}. However, by Landau's well known result on the density of the sums of two squares one can easily show an upper bound of $c^{\prime} \cdot n /(\log n)^{1 / 4}$ for this cardinality.

We conclude this note with another problem. Call an (infinite) sequence $\left\{a_{1}<a_{2}<\cdots\right\}$ free if for any two distinct sets of indices $I, J \sum_{i E I} a_{i} \neq \sum_{j e J} a_{j}$. Pisier was interested in a condition that guarantees that a sequence A is a union of a finite number of free subsequences. He observed that a necessary condition is:

$$
\begin{equation*}
\text { There exists a } \delta>0 \text { such that every finite subsequence } B \text { of } A \tag{6}
\end{equation*}
$$ has a free subsequence C of cardinality $\geqslant \delta|B|$.

It seems unlikely that (6) is also sufficient. However, we could not find any counterexample. One can formulate, of course, the analogous problem for B_{2} sequences.

References

1. D. de Caen, Extension of a theorem of Moon and Moser on complete subgraphs, Ars Combinatoria 16 (1983), 5-10.
2. P. Erdös, On extremal problems on graphs and generalized graphs, Israel J. Math. 2 (1964), 183-190.
3. P. Erdös, Some applications of Ramsey's Theorem to additive number theory, Europ. J. Combinatorics 1 (1980), 43-46.
4. P. Erdös, Extremal problems in number theory, combinatorics and geometry, Proc. Inter. Congress in Warsaw, 1983 (to appear).
5. Many references to B_{2} sequences can be found in: H. Halberstam and K. F. Roth, Sequences, Clarendon Press, Oxford, 1966, chapters 2, 3.
6. J. Komlós, M. Sulyok and E. Szemerédi, Linear problems in combinatorial number theory, Acta Math. Hungar. Acad. Sci. 26 (1975), 113-121.

Received 20 May 1984
N. ALON

Department of Mathematics, Massachusetts Institute of Technology and Mathematics Research Centre, AT\&T Bell Laboratories, Murray Hill, NJ 07974, U.S.A.
P. Erdös

Mathematical Institute, Hungarian Academy of Sciences
Budapest H-1364, Hungary

[^0]: *Research supported in part by the Weizmann Fellowship for Scientific Research.

